top of page

Publications

2024 - Synpacts.png
57. 1,5-Diaza-3,7-diphosphacyclooctanes (P2N2): An Underappreciated Ligand Class for Nickel- and Palladium-Catalyzed Heck-Type Cross-Couplings

Isbrandt, E. S.; Newman, S. G. Synlett 2024, asap. DOI: 10.1055/s-0043-1775400

 

2024 - Chen Org Lett.png
56. Regioselective Synthesis of α-Vinyl Boronates via a Pd-Catalyzed Mizoroki–Heck Reaction

Chen, Z.; Isbrandt, E. S.; Newman, S. G. Org. Lett. 2024, 26, 7723. DOI: 10.1021/acs.orglett.4c02866

 

2024 - Cook deoxygenative arylation with beta silyl effect.png
55. An SN1-Approach to Cross-Coupling: Deoxygenative Arylation Facilitated by the β-Silicon Effect

Cook, A.; Kassymbek, A.; Vaezghaemi, A.; Barbery, C.; Newman, S. G. J. Am. Chem. Soc. 2024, 146, 19929. DOI: 10.1021/jacs.4c03197

Highlighted in Synfacts
Highlighted in OPRD

 

2024 - Kassymbek Heck of Cyclic Enones.png
54. Understanding and Controlling the Mizoroki-Heck Reaction of Cyclic Enones

Kassymbek, A.; Troyano, F. J. A.; Dimakos, V.; Canterbury, D. P.; Monfette, S.; Roosen, P. C.; Newman, S. G. ACS Catal. 2024, 14, 8193. DOI: 10.1021/acscatal.4c00854

Highlighted in OPRD

 

2024 - Thomas Org Syn.png
2024 - Alcohol functionalization.png
53. Synthesis of secondary benzylic alcohols by reductive arylation of aldehydes: α-Phenyl-6-quinolinemethanol.

Thomas, G. T.; Isbrandt, E. S.; Newman, S. G. Org. Synth. 2024, 101, 1. DOI: 10.15227/orgsyn.101.0001

52. Alcohols as substrates in transition metal-catalyzed arylation, alkylation and related reactions

Cook, A.; Newman, S. G. Chem. Rev. 2024, 124, 6078. DOI: 10.1021/acs.chemrev.4c00094

ChemRxiv: 10.26434/chemrxiv-2023-7k37p

2023 - Isbrandt P2N2 regioselective Heck.png
51. Controlling Reactivity and Selectivity in the Mizoroki-Heck Reaction: High Throughput Evaluation of 1,5-Diaza-3,7-diphosphacyclooctane Ligands

Isbrandt, E. S.; Chapple, D. E.; Tu, N. P. T.; Dimakos, V.; Beardall, A. M. M.; Boyle, P. D.; Rowley, C.; Blacquiere, J. M.; Newman, S. G. J. Am. Chem. Soc. 2024, 146, 5650. DOI: 10.1021/jacs.3c14612

ChemRxiv: 10.26434/chemrxiv-2023-t9p7j

2023 - Zheng transesterification.png
50. Nickel-Catalyzed Transesterification of Methyl Esters

Zheng, Y.-L.; Daneshfar, O.; Li, J.-Y.; Masson-Makdissi, J.; Pinault-Masson, E.; Newman, S. G. Synlett 2024, 35, 908. DOI: 10.1055/s-0042-1751485
Invited contribution in dedication to Keith Fagnou

2023 - Cook deoxygenative coupling.PNG
48. Deoxygenative Suzuki–Miyaura Arylation of Tertiary Alcohols through Silyl Ethers

Cook, A.; St. Onge, P.; Newman, S. G. Nature Synthesis 2023, 2, 663. DOI: 10.1038/s44160-023-00275-w

ChemRxiv: 10.26434/chemrxiv-2022-f6jvp

Highlighted in Synform

1119855632.jpg
49. Enabling Tools and Techniques for Organic Synthesis: A Practical Guide to Experimentation, Automation, and Computation

Newman, S. G. (ed). Wiley, 2023.

DOI: 10.1002/9781119855668

2023 - Reductive detrifluoromethylation.png
2023 - Desulfonylative olefination.png
Dimakos - The Power of HTE.webp
2022 - Amide Bond Activation.jpg
2022 - Dimakos enone alpha arylation.png
2022 - Nasin Isatin arylation.png
Chem Catal - Dimakos.JPG
2021 Cook - Deoxygenation.JPG
2021 Isbrandt - a 1,5-Diaza-3,7-diphosphacyclooctane ligands.png
2021 - Freure metalation coupling.png
2021 Zheng - Cross coupling of esters.PN
2021 - Skrotzki Vandavasi Ozone.png
2021 Zheng - Non traditional coupling re
2021 - Cook HTE screening.PNG
2019 - Prakash chemrxiv.PNG
jo0c00216_0009.gif
2020 - Kashani Flow cross coupling.PNG
2019 Zheng ACIE.PNG
2019 Sullivan.gif
2019 Verheyen - Oxidative carbonyl Heck.
2019 Zheng - Amidation.jpg
2018 - Isbrandt ACIE.png
2018 - Ben Halima ACIE.png
47. Reductive Cleavage of C(sp2)-CF3 bonds in Trifluoromethylpyridines

St. Onge, P.; Khan, S. I.; Cook, A.; Newman, S. G. Org. Lett. 2023, 25, 1030. DOI: 10.1021/acs.orglett.3c00258

Highlighted in OPRD

46. Nickel-catalyzed desulfonylative olefination of β-hydroxysulfones

Cook, A.; Bezaire, M.; Newman, S. G. Org. Chem. Front. 2023, 10, 1399. DOI: 10.1039/D2QO01999J
Invited contribution for the Emerging Investigator Series

45. Evolving progress in ester activation driven by high throughput experimentation

Dimakos, V.; Newman, S. G. in The Power of High-Throughput Experimentation: Case Studies from Drug Discovery, Drug Development, and Catalyst Discovery. Eds. M. Emmert, M. Jouffroy, D. Leitch. ACS Symposium Series 2022.

DOI: 10.1021/bk-2022-1420

44. Esters as Viable Acyl Cross-Coupling Electrophiles

Daneshfar, O.; Newman, S. G. in Amide Bond Activation. M. Szostak, Ed. Wiley 2022.

DOI: 10.1002/9783527830251.ch14

43. A Morita–Baylis–Hillman Inspired Cross-Coupling Strategy for the Direct α-Arylation of Cyclic Enones

Dimakos, V.; Canterbury, D. P.; Monfette, S.; Roosen, P. C.; Newman, S. G. ACS Catal. 2022, 12, 11557.

DOI: 10.1021/acscatal.2c03448

42. Reductive 1,2-Arylation of Isatins

Nasim, A.; Thomas, G. T.; Ovens, J. S.; Newman, S. G. Org. Lett. 2022, 24, 7232. DOI: 10.1021/acs.orglett.2c03042

Highlighted in Synfacts

41. Rapid Access to β-Amino Aldehydes by a Ni/Ir Dual-Catalyzed Homologation Reaction

Dimakos, V.; Newman, S. G. Chem Catal. 2021, 1, 1354. DOI: 10.1016/j.checat.2021.11.008

Invited preview

40. Nickel-Catalyzed Reductive Deoxygenation of Diverse C-O Bond-Bearing Functional Groups

Cook, A.; MacLean, H.; St. Onge, P.; Newman, S. G. ACS Catal. 2021, 11, 13337. DOI: 10.1021/acscatal.1c03980

39. Nickel-Catalyzed Aldehyde and Alcohol Arylation Reactions Facilitated by a 1,5-Diaza-3,7-diphosphacyclooctane Ligand

Isbrandt, E. S.; Nasim, A.; Zhao, K.; Newman, S. G. J. Am. Chem. Soc. 2021, 143, 14646. DOI: 10.1021/jacs.1c05661

38. Palladium-Catalyzed Cross-Coupling of Superbase-Generated C(sp3) Nucleophiles

Freure, G. P. R.; Skrotzki, E. A.; Lavertu, J.-D. E.; Newman, S. G. ACS Catal. 2021, 11, 12258. DOI: 10.1021/acscatal.1c03180

Highighted as an Editor's Choice article

37. Direct Synthesis of Ketones from Methyl Esters by Nickel-Catalyzed Suzuki-Miyaura Coupling

Zheng, Y.-L.; Xie, P.-P.; Daneshfar, O.; Houk, K. N.; Hong, X.; Newman, S. G. Angew. Chem. Int. Ed. 2021, 60, 13476.

DOI: 10.1002/anie.202103327

36. Ozone-Mediated Amine Oxidation and Beyond: A Solvent Free, Flow-Chemistry Approach

Skrotzki, E. A.; Vandavasi, J. K.; Newman, S. G. J. Org. Chem. 2021, 86, 14168.

DOI: 10.1021/acs.joc.1c00768
Invited contribution for Enabling Techniques for Organic Synthesis special issue

35. Cross-Coupling Reactions with Esters, Aldehydes, and Alcohols

Zheng, Y.-L.; Newman, S. G. Chem. Commun. 2021, 57, 2591.

DOI: 10.1039/D0CC08389E

34. Reaction Screening in Multiwell Plates: High-Throughput Optimization of a Buchwald-Hartwig Amination

Cook, A.; Clément, R.; Newman, S. G. Nature Prot. 2021, 16, 1152.

DOI: 10.1038/s41596-020-00452-7

33. Exhaustive Reduction of Esters Enabled by Nickel Catalysis

Prakash, S.; Cook, A.; Zheng, Y.-Z.; Newman, S. G. J. Am. Chem. Soc. 2020, 142, 8109.

DOI: 10.1021/jacs.0c02405

Highlighted in ChemistryViews

32. Reaction Cycling for Kinetic Analysis in Flow

Sullivan, R. J.; Newman, S. G. J. Org. Chem. 2020, 85, 5464.

DOI: 10.1021/acs.joc.0c00216

Highlighted in OPRD

31. Exploring Homogeneous Conditions for Mild Buchwald-Hartwig Amination in Batch and Flow

Kashani, S. K.; Jessiman, J. E.; Newman, S. G. Org. Process Res. Devel. 2020, 24, 1948.

DOI: 10.1021/acs.oprd.0c00018

Invited contribution for Flow Chemistry special issue

30. Nickel-Catalyzed Domino Heck-Type Reactions using Methyl Esters as Cross-Coupling Electrophiles

Zheng, Y.-L.; Newman, S. G. Angew. Chem. Int. Ed. 2019, 58, 18159.

DOI: 10.1002/anie.201911372

29. Overcoming Scope Limitations in Cross-Coupling of Diazo Nucleophiles by Manipulating Catalyst Speciation and Using Flow Diazo Generation

Sullivan, R. J.; Freure, G. P. R.; Newman, S. G. ACS Catal. 2019, 9, 5263.

DOI: 10.1021/acscatal.9b01180

Highlighted in Synfacts

28. Ketone Synthesis by a Nickel-Catalyzed Dehydrogenative Cross-Coupling of Primary Alcohols

Verheyen, T.; Turnhout, L. v.; Vandavasi, J. K.; De Borggraeve, W. M.; Isbrandt, E. S.; Newman, S. G. J. Am. Chem. Soc. 2019, 141, 6869.

DOI: 10.1021/jacs.9b03280

27. Methyl Esters as Cross-Coupling Electrophiles: Direct Synthesis of Amide Bonds

Zheng, Y.-L.; Newman, S. G. ACS Catal. 2019, 9, 4426.

DOI: 10.1021/acscatal.9b00884

26. High Throughput Strategies for the Discovery and Optimization of Catalytic Reactions

Isbrandt, E. S.; Sullivan, R. J.; Newman, S. G. Angew. Chem. Int. Ed. 2019, 58, 7180.

DOI: 10.1002/anie.201812534

25. Nickel-Catalyzed Amide Bond Formation from Methyl Esters

Ben Halima, T.; Masson-Makdissi, J.; Newman, S. G. Angew. Chem. Int. Ed. 2018, 57, 12925.

DOI: 10.1002/anie.201808560

24. Flow-Assisted Synthesis of Heterocycles at High Temperatures

Sullivan, J.; Newman, S. in Flow Chemistry for the Synthesis of Heterocycles. K. Sharma & E. Van der Eycken, Eds. Springer 2018.

DOI: 10.1007/7081_2018_18

23. Switchable Selectivity in the Pd-Catalyzed Alkylative Cross-Coupling of Esters

Masson-Makdissi, J.; Vandavasi, J. K.; Newman, S. G. Org. Lett. 2018, 20, 4094.

DOI: 10.1021/acs.orglett.8b01646

22. A High-Throughput Approach to Discovery: Heck-Type Reactivity with Aldehydes

Vandavasi, J. K.; Newman, S. G. Synlett. 2018, 29, 2081.

DOI: 10.1055/s-0037-1610161

Invited Synpacts article

Highlighted in OPRD

21. Overcoming Solid Handling Issues in Continuous Flow Substitution Reactions through Ionic Liquid Formation

Kashani, S. K.; Sullivan, R. J.; Andersen, M.; Newman, S. G. Green Chem. 2018, 20, 1748.

DOI: 10.1039/C8GC00618K

20. Chiral Auxiliary Recycling in Continuous Flow: Automated Recovery and Reuse of Oppolzer’s Sultam

Sullivan, R. J.; Newman, S. G. Chem. Sci. 2018, 9, 2130.

DOI: 10.1039/C7SC05192A

Highlighted in OPRD

19. A Nickel-Catalyzed Carbonyl-Heck Reaction

Vandavasi, J. K.; Hua, X.; Ben Halima, H.; Newman, S. G. Angew. Chem. Int. Ed. 2017, 56, 15441.

DOI: 10.1002/anie.201710241

18. Catalytic Deuteration of Aldehydes with D2O

Isbrandt, E. S.; Vandavasi, J. K.; Zhang, W.; Jamshidi, M. P.; Newman, S. G. Synlett 2017, 28, 2851.

DOI: 10.1055/s-0036-1588540

Invited contribution in honor of Prof. Snieckus

17. A Cross-Coupling Approach to Amide Bond Formation from Esters

Ben Halima, T.; Vanadavasi, J. K.; Shkoor, M.; Newman, S. G. ACS Catalysis 2017, 7, 2176.

DOI: 10.1021/acscatal.7b00245

16. Palladium-Catalyzed Suzuki-Miyaura Coupling of Aryl Esters

Ben Halima, T.; Zhang, W.; Yalaoui, I.; Hong, X.; Yang, Y.-F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017139, 1311.

DOI: 10.1021/jacs.6b12329

Highlighted in Synfacts

Highlighted in Organic Chemistry Frontiers

15. Inherent Vs Apparent Chemoselectivity in the Kumada-Corriu Cross-Coupling Reaction

Hua, X.; Masson-Makdissi, J.; Sullivan, R. J.; Newman, S. G. Org. Lett. 2016, 18, 5312.

DOI: 10.1021/acs.orglett.6b02631

Highlighted in Synfacts

14. Continuous Thermal Oxidation of Alkenes with Nitrous Oxide in a Packed Bed Reactor

Newman, S. G.; Lee, K.; Cai, J.; Yang, L.; Green, W. H.; Jensen, K. F. Ind. Eng. Chem. Res. 2015, 54, 4166.

DOI: 10.1039/C3GC41942H

13. Pd(0)-Catalyzed Carboiodination: Early Developments and Recent Advances

Petrone, D. A.; Le, C. M.; Newman, S. G.; Lautens, M. RSC Catalysis Series 21. New Trends in Cross-Coupling: Theory and Applications. 2014, 276.

DOI: 10.1039/9781782620259-00276

12. Tools for Chemical Synthesis in Microsystems

Jensen, K. F.; Reizman, B. J.; Newman, S. G. Lab Chip 2014, 14, 3206.

DOI: 10.1039/C3GC41942H

11. Rapid Wolff–Kishner Reductions in a Silicon Carbide Microreactor

Newman, S. G.; Gu, L.; Lesniak, C.; Victor, G.; Meschke, F.; Abahmane, L.; Jensen, K. F. Green Chem. 2014, 16, 176.

DOI: 10.1039/C3GC41942H

10. The Role of Flow in Green Chemistry and Engineering

Newman, S. G.; Jensen, K. F. Green Chem. 2013, 15, 1456.

DOI: 10.1039/C3GC40374B

9. Enantioselective Rh-Catalyzed Domino Transformations of Alkynylcyclohexadienones with Organoboron Reagents

Keilitz, J.; Newman, S. G.; Lautens, M. Enantioselective Rh-Catalyzed Domino Transformations of Alkynylcyclohexadienones with Organoboron Reagents. Org. Lett. 2013, 15, 1148.

DOI: 10.1021/ol400363f

8. Theoretical Study of Pd(0)-Catalyzed Carbohalogenation of Alkenes: Mechanism and Origins of Reactivities and Selectivities in Alkyl Halide Reductive Elimination from Pd(II) Species

Lan, Y.; Liu, P.; Newman, S. G.; Lautens, M.; Houk, K. N. Chem. Sci. 2012, 3, 1987.

DOI: 10.1039/C2SC20103H

7. Palladium-Catalyzed Carbohalogenation: Bromide to Iodide Exchange and Domino Processes

Newman, S. G.; Howell, J. M.; Nicolaus, N.; Lautens, J. Am. Chem. Soc. 2011, 133, 14916.

DOI: 10.1021/ja206099t

6. Palladium-Catalyzed Carboiodination of Alkenes: Carbon-Carbon Bond Formation with Retention of Reactive Functionality

Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.

DOI: 10.1021/ja110377q

5. The Use of Bromotrichloromethane in Chlorination Reactions

Newman, S. G.; Bryan, C. S.; Perez, D.; Lautens, M. Synthesis 2011, 342.

DOI: 10.1055/s-0030-1258368

4. The Role of Reversible Oxidative Addition in Selective Palladium(0)-Catalyzed Intramolecular
Cross-Couplings of Polyhalogenated Substrates: Synthesis of Brominated Indoles

Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416.

DOI: 10.1021/ja1052335

3. Intramolecular Cross-Coupling of gem-Dibromoolefins: a Mild Approach to 2-Bromo Benzofused Heterocycles

Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M. Chem. Commun. 2009, 5236.

DOI: 10.1039/B912093A

2. Boron-Catalyzed Direct Aldol Reactions of Pyruvic Acids

Lee, D.; Newman, S. G.; Taylor, M.S. Org. Lett. 2009, 11, 5486.

DOI: 10.1021/ol902322r

1. Factors Controlling Extremely Strong AAA-DDD Triply Hydrogen-Bonded Complexes

Newman, S. G.; Taylor, A.; Boyd, R. J. Chem. Phys. Lett. 2008, 450, 210.

DOI: 10.1016/j.cplett.2007.11.018

bottom of page